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A computer program is presented which is useful in designins optimal focusing 
devices for the synchronous particles in a nonperiodic linear accelerator. The latter 
is divided into sections, each containing a helix-accelerating structure and a quadrupole 
doublet. The helix sections of constant length differ with respect to flight times and 
rf conditions. Foundations are compiled, the program is discussed and an example for 
focusing in a low-energy accelerator is presented. 

A helix linear accelerator [l-5], which is a most suitable structure for accelerating 
heavy ions-for instance Uranium-is the object of our studies at the “Institut 
fur angewandte Physik” of the University of Frankfurt/Main. The high-power rf 
accelerating field requires water cooling of the helix, which is met in our design by 
a section-arrangement, where all sections have the same length of 2 m, each being 
followed by a magnetic quadrupole-doublet to compensate the radial defocusing 
forces of the rf field. Such an accelerator with constant-length focusing and 
defocusing elements represents a nonperiodic system with respect to the particle 
motion, as the flight times of the particles decrease from section to section, while 
the particles are gaining velocity. Therefore the fast and useful scheme of optimizing 
the focusing device by way of synchroton theory [6], which is valid for periodic 
particle motion, cannot be used in the first instance. The following analysis yields 
a method of computing the lowest magnetic field strengthes of the quadrupoles 
necessary to transport the synchronous particles from input to output of the 
nonperiodic accelerator. The scheme is also valid for other types of linear accele- 
rators such as the Alvarez or Wideroe systems and in a stricter sense for the single- 
resonator accelerator principle, as these are neither exactly periodic, which will 
be shown later. 
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1. FOUNDATIONS 

In general calculating the acceptance of an optical system-a rather intricate 
figure in phase space-means a necessarily tedious computational work of tracing 
each incoming particle to the output. An optimisation with respect to a maximum 
acceptance area is nearly impossible. The latter aim is made more facile by 
introducing elliptical acceptances [7], when the radial steering forces are linear 
with distance. In this approximation radial motions of synchronous particles in a 
helix structure are given by the equation 

$ (i) + S1,2r = 0, 

where 

52,2 = - f$ E. sin ‘gs . (2) 

In the expression (2) e, m and u are the charge, mass and average velocity of the 
ion, respectively, while f, E, and vs are the frequency, amplitude, and synchronous 
phase, respectively, of the rf field. The same equation is true for motions in an 
Alvarez-, Wideroe-, or a single resonator-gap. In the focusing plane of a magnetic 
quadrupole the equation is 

g (i) + i-2,+ = 0, (3) 

where 
Q 2-eB 

D 
mu ’ 

(4) 

and B’ stands for the magnetic-field gradient. When particle motions in the 
defocusing plane of a quadrupole are considered, QD* is to be replaced by -sdDp. 

The corresponding transfer matrices are 

and 

’ 

F = ~0s QD & sin QD 

--sdD sin QD co: QD 

D = & sinh QD 

cozh QD 
, 

(5) 

(6) 

(7) 
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where use has been made of the rectangular hard-edged field model [8]. The flight 
times for passing these fields are Tw with 

QW= Tw-sZw, 63) 

and To with 
QD = To*&,. (9) 

Now a linear accelerator is formed by sequences of parts represented by matrix 
products of the types (5), (6), (7). Examples are the VFVD -*a (N = 1) or 
VFVFVDVD **a (IV = 2) focusing devices, being used in most linear accelerators, 
presently in operation. Here all v’s are nearly the same throughout the accelerator, 
if we neglect the l/u dependence in (1) and (2), respectively. Flight times in the 
accelerating gaps remain constant, while the gap length increases in proportion to 
particle velocity. On the contrary in a helix or single resonator accelerator with 
constant lengths of the accelerating and focusing parts, the flight time decreases 
as the velocity increases, so the sequence has a form, e.g., 

VI& V,D, V,& V,D,, in the x-z-plane, 

and 

VI& V,F, V,D, V,F,, in the y-z-plane. 

Referring to (2), (4), (5), (6), (7), the Vi)s, Fls and D,‘s differ from each other. 
It should be emphasized that the matrices are to be put in reverse order when 

matrix products are to be calculated. For a periodic system synchroton theory [6] 
gives the elliptical acceptance in terms of the matrix elements derived from the 
product of one period. Here the equation of an ellipse in phase space r, dr/dt is 
written as 

where c is the ellipse area divided by ?r as long as 

Bore-olo”= 1. 

(10) represents the acceptance ellipse of an optical system, where one section is 
infinitely repeated and represented by a transfer matrix 

whenever we have 

p. = A?- yoyo---, all - as2 
sin p ’ sin ~1 “O = 2sin p * (11) 
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The characteristic exponent p is defined by one-half the trace of A 

cos p = alI + a2, 
2 * 

In order to have a real acceptance ellipse, i.e., real coefficients CL,, , /3,, , y,, , the 
stability criterion is 

-1 < cos/.L < +1. (12) 

Besides a maximum area E has to be chosen in such a way that the beam with an 
emittance (lo), (11) will remain within a prescribed boundary of radius R. 

Here the beam represented by (11) is investigated along the section by way of a 
transfer relation for elliptical beam emittances [7] 

B(t) G 

i 1 i 

--2hA, b,2, Bo 
a(t) = -b&z, W,, + b&l --b&a 

Ii 1 
ol, 9 (13) 

r(t) b:, --2bzlb,, b:, 3/o 

where the elements bik occuring in (13) are to be taken from the 2 x 2 transfer 
matrix of one particle from input to this moment t. At that moment t, , when the 
beam has a maximum blow up, the quantity /3(tl) has its maximum value and the 
relation 

l =j&, (14) 

is to be used. 
The following table gives an insight into the variation of the characteristic 

parameters of 8 helix sections considered here. The section length is 200 cm, and 

TABLE I 

KK (. 10” t&c) 
- 

0 
1 559 
2 687 
3 796 
4 891 
5 974 
6 1054 
7 1135 
8 1209 

b&d TW 
p 10-Q set] QW 

- 
130.0 
200.3 
285.7 
374.1 
456.3 
537.9 
627.5 
725.2 
810.3 

0.8784 15 359.10 1.4539 
1.0773 15 294.77 1.1923 
1.1663 15 251.50 0.9834 
1.0280 30 224.17 1.0998 
1.0198 30 205.53 0.9608 
1.1193 30 189.92 0.8941 
1.2203 30 176.27 0.8350 
1.3510 30 165.39 0.7988 
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the example covers the low-energy part of a bigger machine for Uranium 238, 
designed for a final energy of 7 MeV/nucleon. The first column denotes the 
section number KK, Ekin the particle energy behind the sections, the ion charge 
is 11, and the synchronous phase is taken to be 30”. Evaluations indicate, that the 
acceptance area does not meet the requirements, when N = 2 or even N = 1 
focusing is considered; therefore quadrupole doublets are taken into account and 
a length of 25 cm is chosen for each quadrupole. The pattern is shown in Fig. 1, 

-- - 

r- 7 

-7 T- 

FIG. 1. Scheme of two sections of a helix linear accelerator. Each section consists of a helix 
part followed by a quadrupole doublet. The square of the radial frequencies QS8, Qv2 corresponding 
to the hard-edged rectangular field approximation are drawn against the flight time. 

the sequence is VI Fl D, V, F, D 2 ,..., for the motion with respect to x, and VI D, 
4 Vs D, 4 ,..., for the motion with respect to y. 

Now the objective is to evaluate a maximum acceptance of the accelerator with 
minimum focusing equipment. The course starts by setting the first quadrupole 
doublet at it’s smallest strength that makes the first section stable with respect to 
(12). Using Eqs. (11) and (14) the corresponding acceptance ellipse is taken as 
the beam emittance at the input. To transmit this beam through the whole system 
without loss of particles the beam emittance is successively compared to the 
acceptances of all following sections. Tracing the beam through a new section 
investigations again start with the smallest quadrupol strength, that makes this 
section stable. If the acceptance matches the beam emittance, the beam is trans- 
mitted, in the other case another acceptance corresponding to an increased 
quadrupole strength is examined. The process is then repeated for a larger set of 
beam emittances corresponding to increased quadrupole strengthes of the first 
section within the stable region (12) until an optimal acceptance is found. 
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2. COMPUTATIONS 

Each section now consists of a defocusing helix part, followed by two quadrupole 
parts, i.e., one focusing and one defocusing element and is characterized by a 
radial acceptance depending on the choice of the quadrupole lengths and their 
field gradients. Evaluations show that the error is small when the synchroton 
acceptance (11) is taken for each section instead of the general figure [9], as long 
as the variation of the parameters Q W and TW is small, which is the case in our 
example (see Table I). Therefore the acceptances for all these single sections are 
calculated according to the scheme (1 l), (14), the matrix elements being taken from 
the products of the matrices (5), (6), (7) 

in x-direction and 

A = (;;: 2;) = D . F - V, (15) 

B = (2; z;:) = Fe D . I’, (16) 

in y-direction. 
The process carried out is demonstrated by the flow chart Fig. 2. By aid of the 
given QW = QW(KK) and Tw = T(KK) with KK = 1, QD is varied from 0 
upward (in steps of 0.005 in our work), until a first quantity QD = QDl(KK) is 
found, which gives rise to fulfilment of the condition (12). 

Inserting this quantity QDl(1) coefficients 01/, /II”, r/, cl are derived by aid 
of the Eqs. (1 l), (14), (15), and (16). (In our example the beam diameter should 
not exceed 2R = 4 cm.) In statement number 100 the emittance of the input beam 
is identified with this acceptance as a consequence of the decision KK = 1, “YES” 

E- 
% - Q, A" = A", YIE = Yl", 

and this beam is transported through the first section denoted by the quantities 
Q W(l), T(l), QDl(1). The transport is carried out by means of the transfer 
relations (13), (15) and (16) from input to output 

82” 

0 i 

421 - 2a421 al”z 
E = % -a,,a,, a11az2 + wzl -az1az2 

I%; 

Ii 1 
0~1 , (17) 

Y2E 
2 

a21 - 2a21a22 ai K 
E 

61 = const. (18) 

Relation (18) is a consequence of Liouville’s theorem. 
Now the, calculation of the acceptance by means of Eqs. (11) and (14) is carried 

out for the second section (U = 2). The lowest quantity QD giving rise to a finite 
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FIG. 2. Flow chart for optimal focusing of the synchronous particles in a linear accelerator. 
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acceptance of this section is calculated and denoted QDl(2). The corresponding 
acceptance ellipse is characterized by the coefficients fitA, ar,“, y$, Ed . Entering 
300 DISCRI(LL), with LL = 2 decides, whether the emittance ellipse &*, a+“, 
yZE, l 1 matches the acceptance ellipse /?.j, QL~*, y/, Ed . The criterion for this is 
derived by solving a forth-power equation with respect to the intersection points 
of those ellipses. In case of only two or no real solutions matching takes place, 
provided the emittance area is smaller than the acceptance area. 

Naturally all this has to be done for both directions namely the x-z- and y-z- 
components of motion. If the ellipses fit, i.e., the decision is “YES” at 300, they 
are written per 500, 601 and the program continues by increasing the section 
number by one step. Via statement 100 the fitting emittance is again transported 
at 104, represented by (17); if matching did not take place at 300, the decision 
“NO” gives rise to a storage of the field quantity QD at this section LL by a 
replacement QDQ(LL) = QD and another acceptance ellipse corresponding to 
an increased quantity QD = QDQ(LL) + 0.005 is calculated by way of subroutine 
“NEW ACCEPTANCE.” The emittance is then compared to this new acceptance 
at 300. 

In case that no acceptance ACCEPT (2) is found within (12), the flow takes its 
way toward 400, where a new acceptance is calculated for the preceding section 
KK = 1. For this section the field quantity has already been discussed and stored 
as QDQ(1). By increasing QDQ(1) by 0,005 transport again takes place at 100 and 
the acceptances LL = KK + 1 are successively compared to this new emittance 
at 300 again. The program stops at 600, if all possible acceptances of the first 
section have been worked through. For general section numbers KK the game is 
illustrated in Fig. 3. 

I 
QW (JJI 

KK-2 I KK-1 1 KK II LL P 

EMMM-2) 1 EMOKK-II 1 EWKK) 1 fu/(~L) 1 -JJ 

ACCEPTIKK-21 ACCEPTfKlCll ACCEPI(KKI AWEPT 

FIG. 3. Pattern to track the matching emittances and acceptances from section to section. 
An emittance EMI is not accepted by Section LL at III until both preceding sections 
KK = ,!,L - 1 and KK = LL - 2 are operated by proper minimum-field quantities QDQ! 
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Assume, that the emittance EMI(KK - 2) fits an acceptance ACCEPT(KK - 2) 
with M = 2, where M denotes the number of steps necessary to attain 
QOQ(KK - 2) = QDl(KK - 2) + 0.005 M, EMI(KK - 2) is transported to 
I (continued line in Fig. 3) at statement 104 (Fig. 2) and denoted by EMI(KK - I). 

Beyond that EMI(KK - 1) should also fit ACCEPT(KK - I), with M = 3, 
and is denoted by EMI after transfer from I to II (continued, line Fig. 3). 
In the first instance EMI is assumed to match acceptance ACCEPT(KK) with 
M = 4, is then transported to III and denoted by EMI( with LL = KK + 1 
(continued line in Fig. 3). 

Now assume, that no acceptance (LL) is found via 300 + DISCRI(LL) 
“NO” -+ NEW ACCEPTANCE within - 1 < cos p < + 1, the preceding 
section (KK) will then be investigated again, while M is increased by unity (M = 5 
now in Fig. 3) by way of Statement 400 (Fig. 2). The emittance EMI at II 
(Fig. 3) matched to this new acceptance ACCEPT(KK) at DISCRT(KK) < 0 
“YES” is transported to III via 100 (dotted line in Fig. 3) and at last accepted 
by Section (LL) with M = 4 (dashed line in Fig. 3). In case of a decision “NO” 
at DISCRI(KK) new acceptances (KK) are successively worked out at 400 (Fig. 2) 
and matching is investigated with respect to the renowned EMI( If all possi- 
bilities of Section (KK) have been checked without success, the section number, 
which had been KK, will again be decreased by unity per KK = KK - 1, and the 
still familiar EMI(KK - 1) will then be compared to a new acceptance ACCEPT 
(KK - l), which is now operated by an increased M, namely from 3 to 4 in our 
example (dotted and dashed line in Fig. 3) at 400 (Fig. 2). In any case emittances 
and acceptances will be written whenever they match, until the beam reaches the 

I 

-f -Q5 0 QS 1 cosp 

FIG. 4. Acceptance area plot as a function of cos p for 8 parameters Q W occuring in the 
example presented here. 
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FIG. 5. Matched emittance and acceptance ellipses between the sections. On the left-hand 
side the ellipses correspond to the x- and the right-hand side to the ydirection. For both directions 
the areas are identical. 
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designed final energy. By way of the decision LL = 9, “YES” the emittance of 
the output beam is written at 601 and by way of statement KK = 1 a new accep- 
tance and the corresponding emittance obtained by an increased M = A4 + 1 at 
the input is tracked through the accelerator until all focusing field gradients of 
interest-for instance within - & < cos p < + k-have been taken care of. 

RESULTS 

Calculations have been carried out for a set of quantities QD in steps of 0.005, 
delivering reasonable acceptance areas E depending on the characteristic exponent 
for given parameters Q W. These areas are displayed in Fig. 4. It turns out, that 
maximum acceptance areas are not achieved exactly at cos p = 0 but at small 
positive values. In our example cos TV = 0.06 determines a maximum acceptance 
area of 6.6 cm . mrad with a maximum beam diameter of 2R = 4 cm for the first 
section, being simultaneously the optimal acceptance of the low-energy design 
in Fig. 1. The matching acceptance ellipses and the resulting beam emittances for 
each section are displayed in Fig. 5. In Fig. 6 the functions QW, QDI, QD, cos p 
and B’ are plotted against the section number. Some interesting behavior occures 
at section number 4, where the duplicated rf frequency (Table I) interrupts the 
monotony of the argument QW, causing a disturbance in the steady rise of cos p 
already at section number 3. As a consequence the field gradient B’ has to be 

/ / -.-‘-.-.- ._._ _, 

,/- 
_/Cd 

I 

-4’ 
.’ 

0.14 
? 2 3 4 5 6 7 a 

---w Sectron 

FIG. 6. Plot of sign&ant quantities as functions of the section number, namely the given 
arguments QW, the smallest field quantities QDl to attain cos p within (12), the smallest field 
quantities QDQ to match acceptances and emittances throughout the accelerator and the 
corresponding field gradients B’ of the magnetic quadrupoles. 
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slightly increased here and the y-ellipses in Fig. 5 do not touch each other contrary 
to their behaviour at all other sections. 

The inner ellipses at LL = 2 correspond to the input acceptance, the output 
beam is described by the single ellipses at LL = 9. All areas and ellipses displayed 
in Fig. 4 and 5, respectively, are calculated in units of cm . mrad with reference 
to an input particle energy of 130 keV/A. The programs have been written in 
Fortran IV language, the computations have been carried out by an IBM 7094 
computer at the DRZ Darmstadt, Germany. The machine time used in our 
example was 6.25 min., calculating focusing designs for a bigger accelerator up 
to a final energy of 7 MeV/A time did not exceed 30 min. in any case. 
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